Hyperspectral Image Classification Using Graph Clustering Methods
نویسندگان
چکیده
Hyperspectral imagery is a challenging modality due to the dimension of the pixels which can range from hundreds to over a thousand frequencies depending on the sensor. Most methods in the literature reduce the dimension of the data using a method such as principal component analysis, however this procedure can lose information. More recently methods have been developed to address classification of large datasets in high dimensions. This paper presents two classes of graph-based classification methods for hyperspectral imagery. Using the full dimensionality of the data, we consider a similarity graph based on pairwise comparisons of pixels. The graph is segmented using a pseudospectral algorithm for graph clustering that requires information about the eigenfunctions of the graph Laplacian but does not require computation of the full graph. We develop a parallel version of the Nyström extension method to randomly sample the graph to construct a low rank approximation of the graph Laplacian. With at most a few hundred eigenfunctions, we can implement the clustering method designed to solve a variational problem for a graph-cut-based semi-supervised or unsupervised classification problem. We implement OpenMP directive-based parallelism in our algorithms and show performance improvement and strong, almost ideal, scaling behavior. The method can handle very large datasets including a video sequence with over a million pixels, and the problem of segmenting a data set into a pre-determined number of classes.
منابع مشابه
Improvement of the Classification of Hyperspectral images by Applying a Novel Method for Estimating Reference Reflectance Spectra
Hyperspectral image containing high spectral information has a large number of narrow spectral bands over a continuous spectral range. This allows the identification and recognition of materials and objects based on the comparison of the spectral reflectance of each of them in different wavelengths. Hence, hyperspectral image in the generation of land cover maps can be very efficient. In the hy...
متن کاملMultiple Classifiers and Graph Cut Method for Spectral Spatial Classification of Hyperspectral Image
Hyperspectral image contains fine spectral and spatial resolutions for generating accurate land use and land cover maps. Supervised classification is the one of method used to exploit the information from the hyperspectral image. The traditional supervised classification methods could not be able to overcome the limitations of the hyperspectral image. The multiple classifier system (MCS) has th...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملHyperspectral Image Classification by Fusion of Multiple Classifiers
Hyperspectral image mostly have very large amounts of data which makes the computational cost and subsequent classification task a difficult issue. Firstly, to solve the problem of computational complexity, spectral clustering algorithm is imported to select efficient bands for subsequent classification task. Secondly, due to lack of labeled training sample points, this paper proposes a new alg...
متن کاملSub-pixel classification of hydrothermal alteration zones using a kernel-based method and hyperspectral data; A case study of Sarcheshmeh Porphyry Copper Mine and surrounding area, Kerman, Iran
Remote sensing image analysis can be carried out at the per-pixel (hard) and sub-pixel (soft) scales. The former refers to the purity of image pixels, while the latter refers to the mixed spectra resulting from all objects composing of the image pixels. The spectral unmixing methods have been developed to decompose mixed spectra. Data-driven unmixing algorithms utilize the reference data called...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IPOL Journal
دوره 7 شماره
صفحات -
تاریخ انتشار 2017